Macau — Aomen redirects here. For the island in the Pacific Ocean, see Aomen (Bikini Atoll). For other uses, see Macau (disambiguation). Coordinates: 22°10′N 113°33′E / 22.167°N 113.55°E … Wikipedia
Names of Macau — The Macau Special Administrative Region (simplified Chinese: 澳门特别行政区; traditional Chinese: 澳門特別行政區; pinyin: Àomén Tèbié Xíngzhèngqū; in Mandarin (help·info) … Wikipedia
Kantonesische Sprache — Kantonesisch (粵語) Gesprochen in Volksrepublik China, Hongkong, Macao, Singapur, Malaysia sowie in einigen westlichen Ländern mit emigrierter, chinesischer Bevölkerung Sprecher 71 Millionen Linguistische … Deutsch Wikipedia
Mazu (goddess) — Goddess of the Sea redirects here. For Goddess of the Sea in Finnish mythology, see Vellamo. Tin Hau redirects here. For other meanings of Tin Hau, see Tin Hau (disambiguation) A Mazu statue in Kinmen, Republic of China Mazu (simplified Chinese:… … Wikipedia
Kung Fu Hustle — Infobox Film name = Kung Fu Hustle caption = Hong Kong film poster. director = Stephen Chow producer = Stephen Chow Chu Po Chui Jeffrey Lau writer = Stephen Chow Tsang Kan Cheong Xin Huo Chan Man Keung narrator = starring = Stephen Chow Yuen Wah… … Wikipedia
Kenshiro Abbe — Infobox martial artist name = Kenshiro Abbe residence = Tokushima, Japan caption = Kenshiro Abbe birth name = Kenshiro Abbe birth date = Birth date|1915|12|15 birth place = Tokushima, Japan death date = Death date and age|1985|12|01|1915|12|15… … Wikipedia
Lollipop (Taiwanese Group) — This article is about the Taiwanese Mandopop group. For other uses of the term Lollipop , see Lollipop (disambiguation). Infobox Chinese language singer and actor name = Lollipop caption = chinesename = tradchinesename = 棒棒堂 simpchinesename =… … Wikipedia
Mazu — Bekleidete Mazu Statuen Mazu (chinesisch 媽祖 / 妈祖 Māzǔ, kant. Maa1 Zou2; viet. Ma Tổ „Mutterahn“) ist eine daoistische Göttin. Sie wird auch als Tianhou (chinesisch … Deutsch Wikipedia
Puissance d'un point par rapport a un cercle — Puissance d un point par rapport à un cercle En géométrie euclidienne du plan, la puissance d un point M par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de M par rapport à ce cercle. Elle peut être définie… … Wikipédia en Français